
Mesure des distances

dans l'univers

Introduction

- position des astres dans le ciel : assez bien maîtrisée aujourd'hui

 distance des objets astronomiques (3eme dimension) : moins bien maitrisée

Introduction

Mesure des distances

- -problème se posant pour tous les objets célestes
- -pas de solution unique
- -plus un objet est loin, plus sa distance est difficile à mesurer!

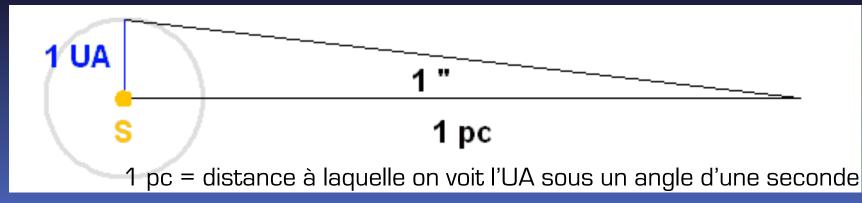
Méthodes astronomiques de mesure des distances : mesures indirectes

- -Méthodes géométriques
- –Méthodes physiques
- -Méthodes cosmologiques

- ⇒ objets plus lointains
- ⇒ objets les plus distants

Unités de distances

Distance Terre soleil : Unité Astronomique

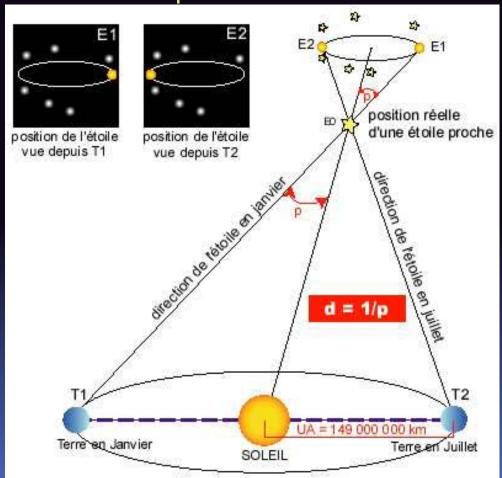

1 UA = 149 597 870 700 mètres \approx 1,5 10^{11} m

Année lumière

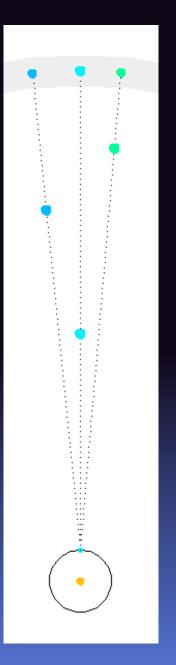
 $1 AL = 9,5 10^{15} m = 63 000 UA$

Parsec (pc) : « nouvelle » unité de distance

-distance correspondant à une parallaxe d'une seconde



 $-1 \text{ pc} = 3,26 \text{ AL} \approx 3.10^{16} \text{ m} \approx 30 \cdot 10^{12} \text{ km}$



Bref rappel

Méthode de la parallaxe

distance des étoiles les plus proches.

Quelques exemples

Distance moyenne Planète - Soleil

- -Terre: 8 minutes-lumière
- -Jupiter à 43 minutes-lumière,
- -Neptune à plus de 4 heures-lumière
- -Confins du système solaire (nuages d'Oort) : environ 1AL

Mars à 12 minutes-lumière

Saturne à 79 minutes-lumière

Quelques exemples

Distance dans la galaxie

-Proxima du Centaure : 4,24 AL

-Sirius: 8,7 AL

-Arcturus: 36,7 AL

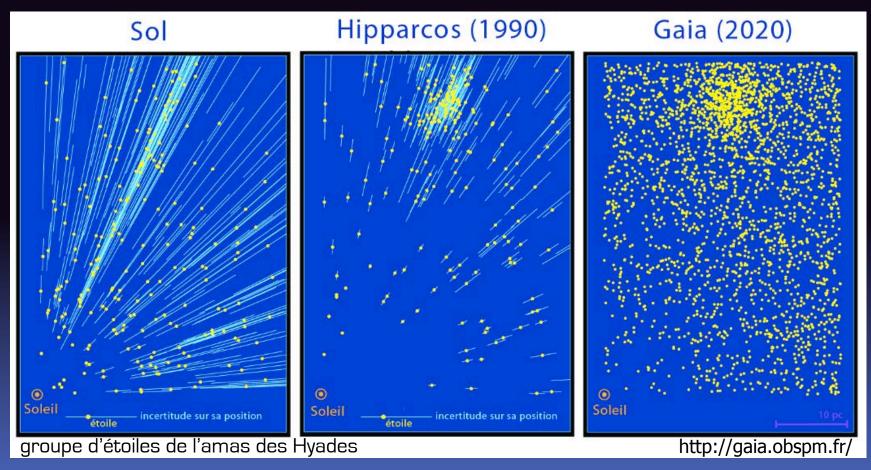
-M13:22 200 AL

Valeur de la parallaxe de Proxima du Centaure

-0,765"

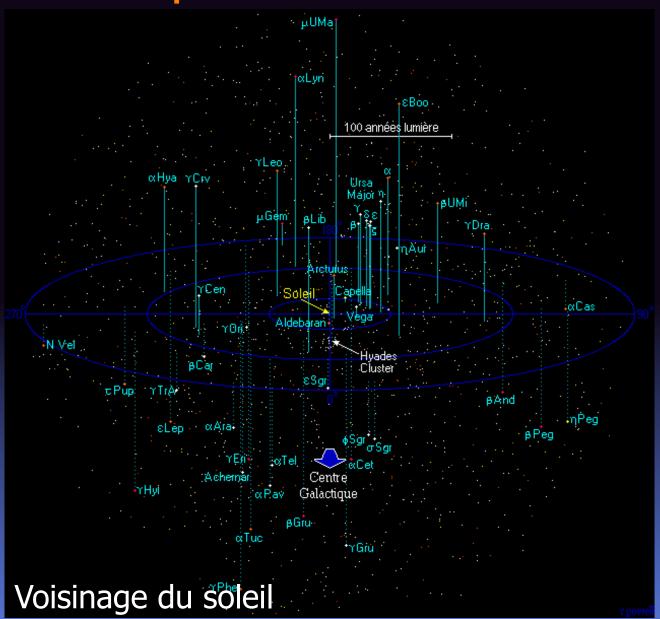
- Pour comparaison, le

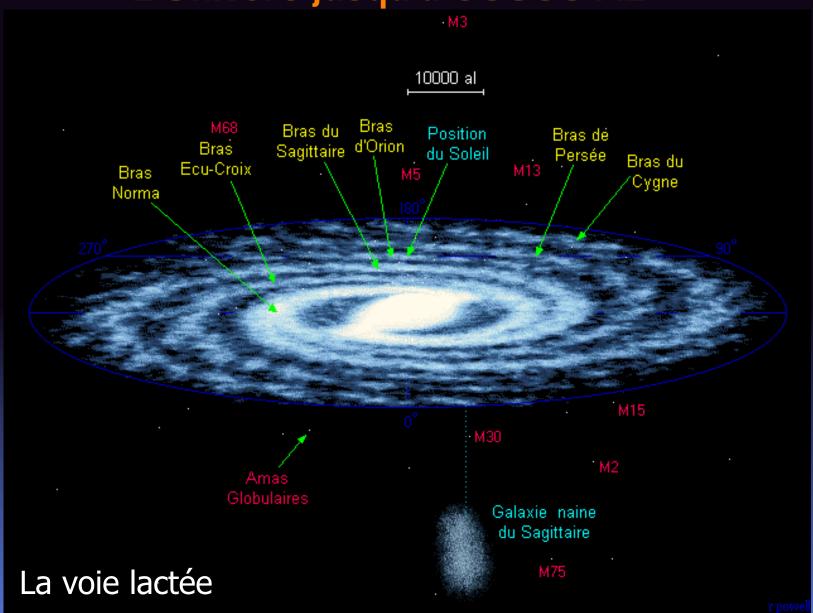
diamètre apparent de la lune


-Centre de la galaxie : 30 000 AL est de 1800"! •61 Cygni Galactic Centre :εEridani L372-58

10 Light Years

Mesures avec des satellites


Plus d'étoiles, plus loin, précision meilleure


Mesure de parallaxe (à mieux que 10%) avec Gaia : 30 000 AL

Jusqu'à 250 AL du soleil

L'Univers jusqu'à 50000 AL

Partie 2 Méthodes physiques et cosmologiques

Relation magnitudes/ distance

Les indicateurs primaires

Les indicateurs secondaires

Ressources bibliographiques

La mesure des distances dans le système solaire et dans l'univers J.-E. Arlot, G. Theureau, Observatoire de Paris/UFE

Distance et temps , cours de l'Observatoire de Paris-Meudon, auteur : Benoit Mosser

http://media4.obspm.fr/public/ressources_lu/index.html

Mesure des distances dans l'Univers, JP. Maratrey - juillet 2008

Mesure des distances, cours à l'Observatoire historique de Marseille http://astronomia.fr/1ere_partie/distances.php

http://www.astrosurf.com/luxorion/menu-science.htm

Succession d'étapes

Les étoiles les plus proches servent à estimer les distances d'autres étoiles ou amas d'étoiles plus éloignés...

... où sont présentes certaines catégories d'objets suffisamment brillants pour être observés et reconnus dans d'autres galaxies ...

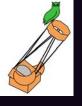
... qui à leur tour, par une morphologie ou une caractéristique physique particulière, permettent d'estimer la distance de galaxies encore plus lointaines...

... pour arriver à la loi de Hubble qui énonce qu'une galaxie lointaine fuit le Soleil proportionnellement à son éloignement.

Mesure des distances via la luminosité

Connaissance des étoiles les plus proches

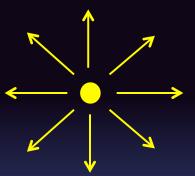
- -Mesure de leurs distances par trigonométrie (parallaxe)
- -Analyse de leurs propriétés physiques ex : luminosité



Détermination de la distance d'étoiles lointaines

- -mesure de la luminosité apparente
- -comparaison avec ce que l'on connait de la luminosité intrinsèque L de l'objet.

Différentes méthodes pour déterminer L

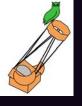


Luminosité/distance

Magnitude absolue

- Chaque étoile (ou galaxie) a une luminosité propre.
 - quantité d'énergie qu'elle dégage dans toutes les directions.

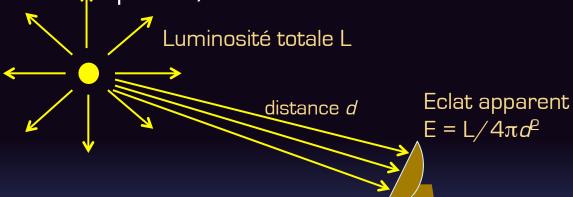
Luminosité totale L



Analogie : puissance d'une ampoule en Watt, inscrite sur son culot.

-Caractéristique exprimée par la « magnitude absolue » M M ≈ - 2.5 log L + Cte

Remarque


 Echelle des magnitudes construite de manière à ressembler aux « grandeurs » d'Hipparque

Luminosité/distance

Magnitude apparente

-E = éclat apparent : puissance reçue par unité de surface sur le capteur , fonction de la distance de l'observateur

Si *d* est doublée, l'éclat apparent est divisé par 4

-mesure de l'éclat apparent dans une échelle logarithmique

m
$$\approx -2.5 \log E \approx -2.5 \log L + 5 \log d + Cte$$

= M + 5 log d + Cte' d en parsecs (pc).

-par définition, magnitude absolue = magnitude apparente qu'aurait l'objet si il était situé à 10 parsecs de nous

Module de distance

 $\mu = m - M = 5 \log d - 5$, d distance en parsecs (pc)

Principe de base de la mesure des distances

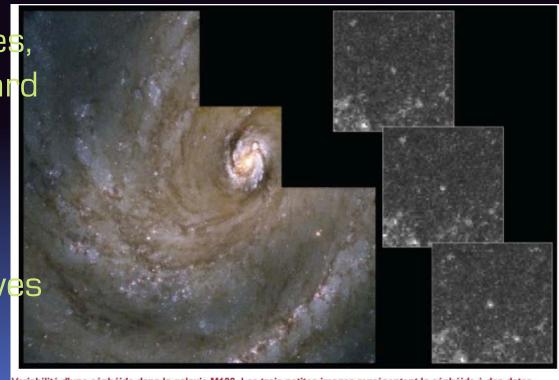
connaissance de la magnitude absolue M d'une étoile

& mesure de sa magnitude apparente m.

$$d = 10^{[(\mu+5)/5]}$$

Deux grandes classes d'indicateurs de distance :

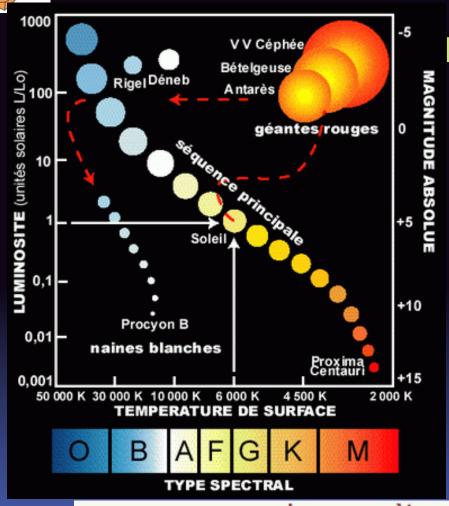
- 1. Primaires : basés sur des propriétés d'étoiles individuelles ou d'objets bien connus de notre Voie Lactée distances à l'intérieur de notre propre Galaxie et jusqu'aux quelques quarante galaxies les plus proches
- 2. Secondaire: dépendent de propriétés globales des galaxies, atteignent des échelles beaucoup plus grandes et concernent plusieurs milliers d'objets.



Les indicateurs primaires

- la parallaxe spectroscopique
 - -basée sur le diagramme de Hertzsprung-Russell,

- les étoiles variables, chandelles standard
 - RR-Lyrae
 - Céphéides


 les étoiles explosives (supernovae).

Variabilité d'une céphéide dans la galaxie M100. Les trois petites images représentent la céphéide à des dates différentes.

Crédit : HST

Parallaxe spectroscopique

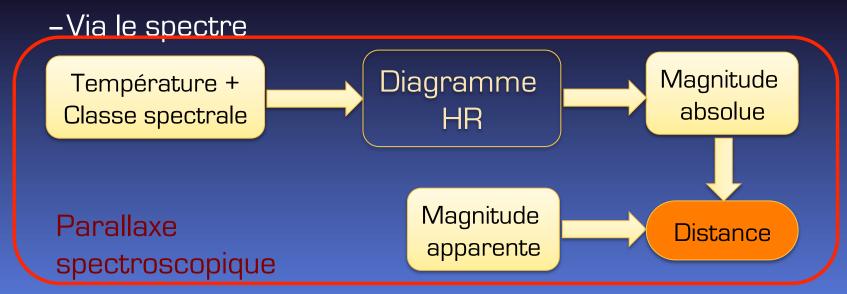
Diagramme de Hertzsprung-Russel

- -Relation entre luminosité intrinsèque L et température superficielle des étoiles T
- -Élément incontournable de l'étude de l'évolution et de la physique stellaire.

Les	paramètres	du diagramme	HR
-----	------------	--------------	----

Abscisse Température effective - Indice de couleur - Type spectral...

Ordonnée Luminosité (en W ou en luminosité solaire) - Magnitude absolue ...

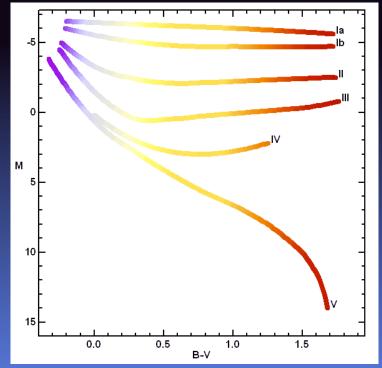


Parallaxe spectroscopique

Détermination de la température

- -Détermination assez précise via
 - Couleur de l'étoile
 - différence de magnitude entre les mesures dans deux filtres (B-V)
 - Type spectral
 - obtenus par l'étude du spectre de l'étoile

Détermination de la classe spectrale

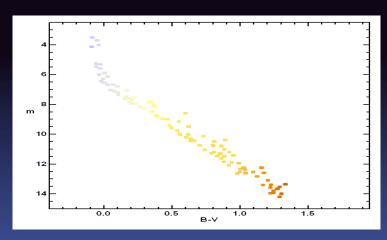

Diagramme HR et amas

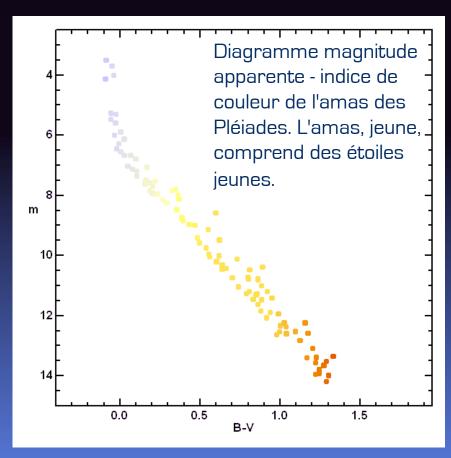
Diagrammes couleur magnitude d'amas d'étoiles

(tout comme l'avait fait Hertzsprung au moment de sa découverte).

- étoiles d'un amas toutes à la même distance
- diagramme H-R des étoiles de l'amas, utilisant m : décalé le long de l'axe vertical par rapport à un diagramme en magnitude absolue de la

quantité : $\mu = m - M = 5 \log d - 5$




Diagramme magnitude apparente indice de couleur de l'amas des Pléiades. L'amas, jeune, comprend des étoiles jeunes.

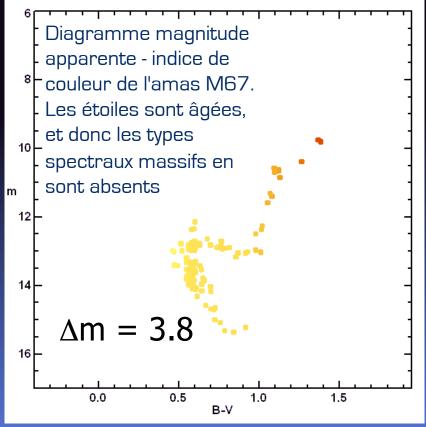


Diagramme HR et amas

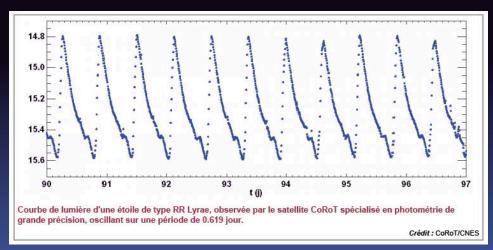
Détermination de la distance de l'amas

 Comparaison des positions en magnitude apparente des séquences principales de différents amas → distances relatives.

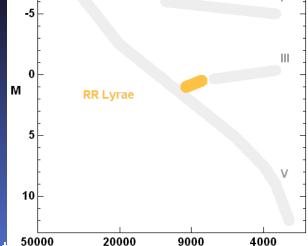
Chandelles standards

Utilisation de chandelles standards

- -Reconnaissable à distance et dont on a calibré la luminosité.
- -Choix d'une catégorie d'astres :
 - dont on a toutes les raisons de penser qu'ils ont tous la même luminosité,
 - 2. que l'on peut aisément identifier par l'observation d'un ou plusieurs paramètres indépendants de la distance,
 - 3. qui sont suffisamment lumineux pour qu'on puisse les observer à grande distance.



Les étoiles variables RR-Lyrae


du nom de la première d'entre-elles identifiée

 groupe très homogène : toutes à peu près la même < M > Etoiles vieilles, près du centre Galactique, dans le halo, ou dans les amas globulaires.

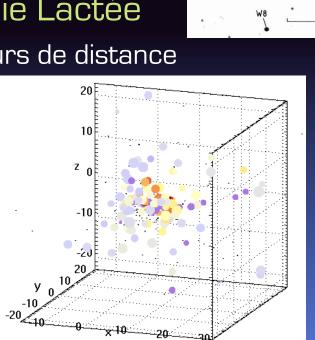
Courbe de lumière

présente des variations très régulières.

T (K)

Dans le diagramme HR

- dans la bande d'instabilité.
- région très peu peuplée de la branche horizont

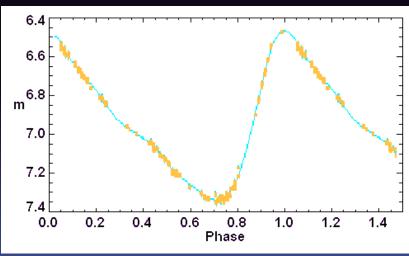

Les étoiles variables RR-Lyrae

Principe de la mesure

- -RR Lyrae: toutes la même magnitude absolue
 - 1. Identification comme RR Lyrae, via leur variabilité
 - 2. Comparaison entre magnitudes apparente et absol
 - \rightarrow m M = 5 log d 5

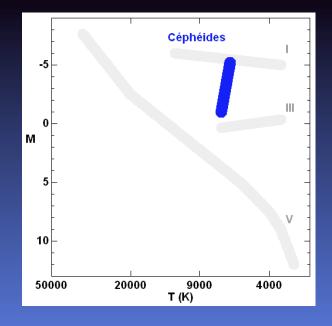
RR-Lyrae, amas globulaires et Voie Lactée

- H. Shapley: RR-Lyrae comme indicateurs de distance
- ⇒ distribution des amas globulaires dans notre Galaxie
- ⇒ distance du Soleil au centre de la Voie Lactée
- ⇒ Diamètre de 300.000 al (soit trois fois trop grand).



Du nom de l'étoile δ Céphée découverte en 1784 par John Goodricke

- étoiles jeunes, massives donc lumineuses
- étoiles pulsantes, la luminosité varie périodiquement

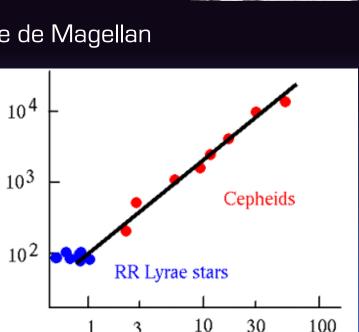

Courbe de lumière

Plus la céphéide est lumineuse, plus sa période de variation est longue.

-position particulière dans la bande d'instabilité

Principe de la mesure : relation période-luminosité

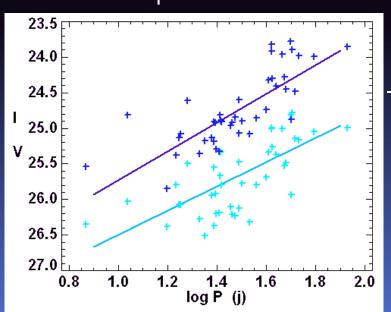
- -Découverte en 1912, par Henrietta Leavitt
- –plus la céphéide est lumineuse, plus sa période P est longue

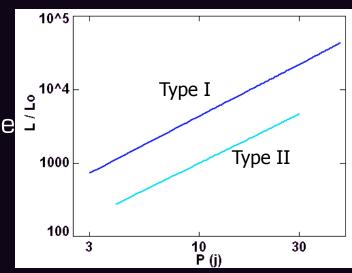

$$< M > = a log P + b.$$

a : à partir des céphéides du Petit Nuage de Magellan

b : étalonnage avec des céphéides de distances connues : dans amas globulaires

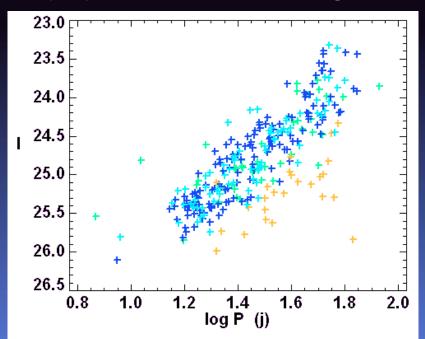
- => magnitude absolue <M>
- => distance par comparaison avec <m>


luminosity (L_{sun})

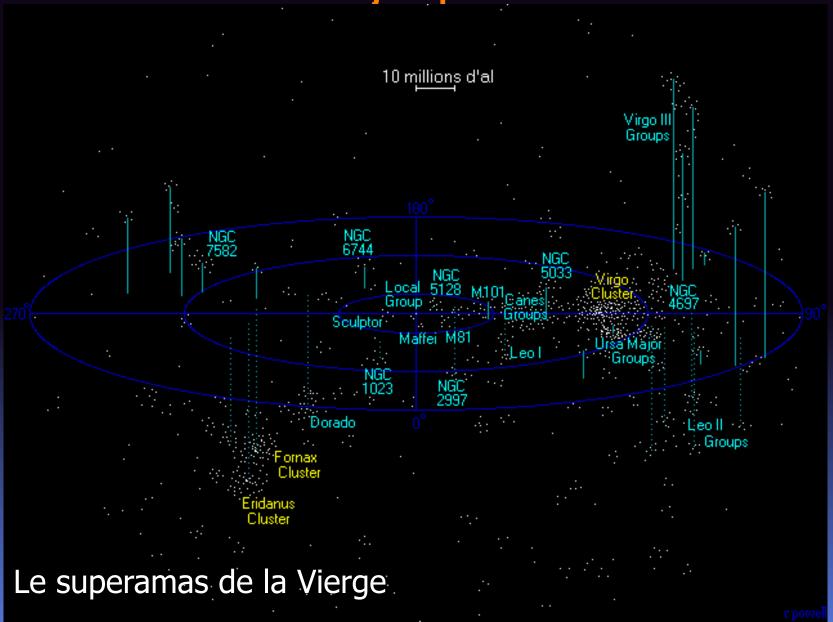

period (days)

Améliorations de la méthode

- Céphéides : type I et type II
- Plusieurs longueurs d'onde : étalonnage et mesure dans une même gamme
- Nécessité de tenir compte de l'absorption



- Mesure des variations de magnitude d'une étoile céphéide dans deux zones spectrales différentes :
 - en visible, au maximum d'intensité : bonne précision sur la période P
 - en IR : limite les effets de l'extinction interstellaire pour la mesure de M


Les distances mesurables

- -céphéides : intrinsèquement très lumineuses => observées à grande distance (25 Mpc (80 M AL) avec Hubble).
 - type I:, principalement dans les bras des galaxies spirales.
 - type II : dans les bulbes des galaxies spirales, dans les galaxies elliptiques et dans les amas globulaires.

Étalonnage de la droite PL : nécessaire d'évaluer M ou d par des méthodes indépendantes

L'univers jusqu'à 100 MAL

Les supernova<u>e</u>

Explosion globale d'une étoile

- <u>-Énergie libérée en 1 fois : très brillante</u>
 - Type I : transfert de masse entre les 2 composantes d'un système binaire
 - Type II : fin de vie normale d'une étoile de masse > 9 M_{\odot} : effondrement du cœur, couches externes expulsées violemment.

Les supernovae de type la

- M : remarquablement constante au maximum d'éclat, évaluée dans le visible à : $M_{\rm v} \simeq -19.48 \pm 0.20$

Les supernovae

Principe de la mesure

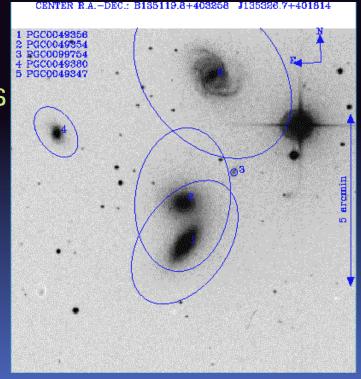
- -Mesure de la magnitude apparente d'une SN la
- \rightarrow distance via $\mu = m M = 5 \log d 5$

Les distances mesurables

-SN la : indicateurs primaires à plus longue portée, distances cosmologiques, (au-delà de z = 1) soit presque 10 000 M AL

Difficultés de la méthode

- -Une supernova est un évènement rare.
- -Nécessité d'être prêt à faire la mesure de m
- -Méthode affectée par l'absorption interstellaire (comme les autres)

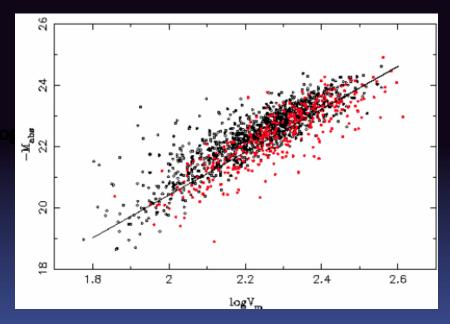


Les indicateurs secondaires

Indicateurs de distances basés sur les propriétés statistiques de familles d'objets galactiques ou sur les propriétés globales des galaxies elles-mêmes.

- Propriétés globales des galaxies
 - Relation de Tully Fisher
 - La relation Faber-Jackson
 - Galaxies sosies

- Méthodes cosmologiques
 - Loi de Hubble et décalage vers le rouge



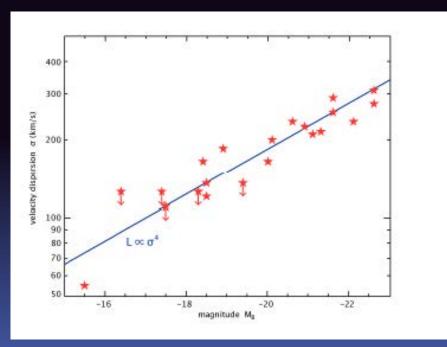
Relation de Tully-Fisher

• du nom des deux astronomes anglais qui l'ont découverte en 1977

Galaxies spirales:

- Relation entre vitesse de maximale de rotation V_m et luminosité
 - loi empirique $M = a \log V_m + b$
- relation de type masse-luminosité plus une galaxie est massive
 - 1. plus elle tourne vite,
 - 2. plus elle est lumineuse
- vitesse de rotation V_m mesurée à partir de l'émission du gaz

- Étalonnage : en mesurant V_m dans le disque de galaxies dont la distance est connue. Les céphéides de ces galaxies conviennent.
 - erreur sur la détermination des distances par les Céphéides répercutée sur la détermination par Tully-Fisher.


Relation de Faber-Jackson

- du nom des deux astronomes qui l'ont découverte en 1976 galaxie elliptique ou lenticulaire (bulbe d'une spirale)

- Relation entre luminosité intrinsèque et dispersion des vitesses des

étoiles mesurées en son coeur.

- loi empirique $M = a \log \sigma + b$
- relation de type masse-luminosité
- Mesure de la dispersion centrale des vitesses très délicate
 - par spectrométrie : agitation des étoiles de la galaxie
 - Luminosité d'autant plus forte que l'agitation est grande.

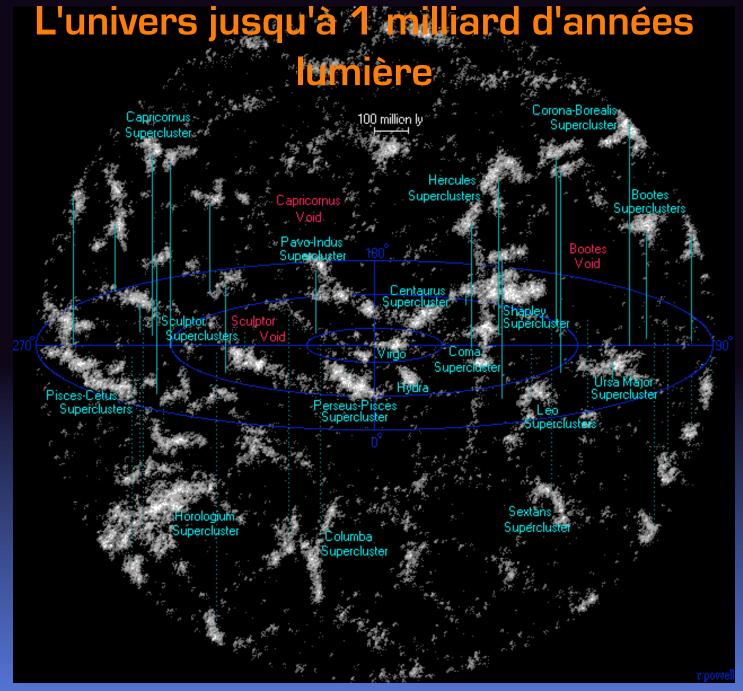
Tully-Fisher / Faber Jackson

Principe de la mesure

- Mesure de V_m/σ \Rightarrow détermination de M + mesure de m galaxie \Rightarrow distance d (via module de distance)
 - m également affectée par l'extinction interstellaire comme dans les méthodes précédentes.
 - dispersion dans la relation : pour un même V_m/σ , pas exactement la même valeur de M (dû à la morphologie de la galaxie)

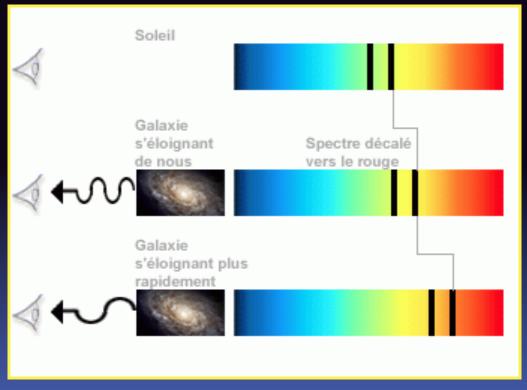
Les distances mesurables

- Distances allant jusqu'à environ 300 Mpc (1 milliard d'AL)
- Précision
 - Tully-Fisher : « acceptable » de 15 à 20 % d'erreur.
 - Faber Jackson: incertitude d'environ 30 %
- Mesures disponibles : Vitesse pour 16600 galaxies (Tully Fischer) et dispersion pour environ 4000 galaxies (Faber-Jackson)


Galaxies sosies

Mêmes caractéristiques : même magnitude absolue

-Comparaison de l'éclat observé à l'éclat d'une galaxie étalon de distance connue pour avoir la distance de la galaxie.



Décalage spectral

-examen de raies galactiques sur des objets de plus en plus

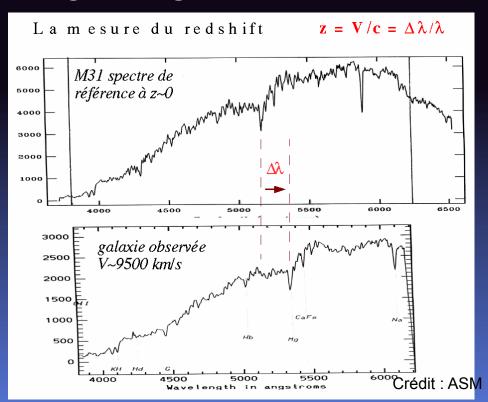
lointains.

Le plus utilisé des estimateurs de distance

-décalage spectral, interprété via l'effet Doppler dû à la vitesse de fuite des galaxies $V_r = c$.

Expansion de l'univers

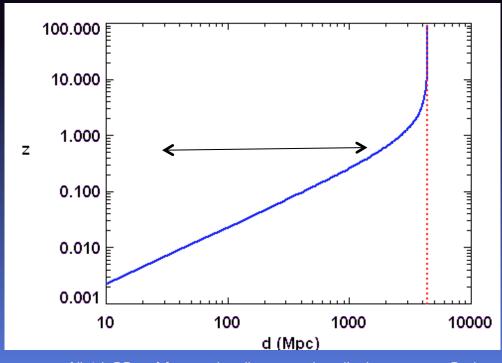
-1929 : décalage spectral $(z = \Delta \lambda/\lambda)$ proportionnel à la distance d des galaxies, et comme $V_r = c$. z


 $V_r = H_0 d H_0$: constante de Hubble

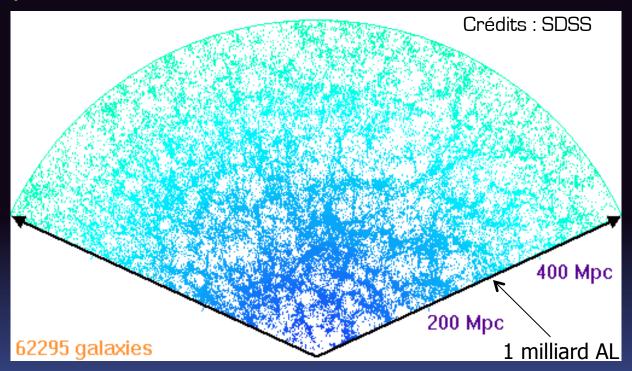
-Plus une galaxie est éloignée, plus vite elle s'éloigne

Principe de la mesure

Spectre de la galaxie

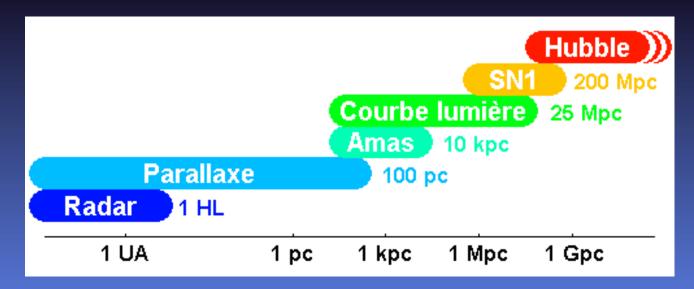

- ⇒décalage spectral z
- ⇒vitesse radiale V_r
- ⇒distance *d*

Domaine de validité

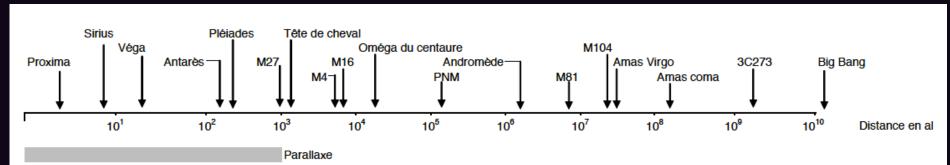

- -Méthode valable pour galaxies très éloignées d > 100 Mal où $V_p \ll V_r$ (difficile de faire leur spectre)
- $-V_r = H_0 d$ valable que dans l'univers proche d < 5 000 Mal où les effets de la courbure de l'espace ne se font pas sentir.

Crédit · ASN

Cartographie 3D


Au-delà?

- -Lentilles gravitationnelles
- -Effet Sunyaev Zel'dovich


Conclusions

- La distance des objets proches est évaluée assez précisément.
- Plus les astres sont éloignés, plus l'incertitude augmente.
- Pour les objets lointains, les méthodes utilisées, même imprécises, sont souvent les seules disponibles
- La technologie évoluant rapidement, les précisions s'améliorent.

Conclusions

Céphéides

Tully-Fisher et Faber-Jackson

Supernovas la

Hubble

Portée théorique	
1 000 al	
40 millions d'al	
1 milliard d'al	
5 milliards d'al	
Premières galaxies	